

SPRING: THEORY

- Displacement sensitive lb./inch
- Wheel rate based on suspension geometry
- Springs control tire load and distribution
- Springs store energy and need shocks to control the release of that energy

** Linear rate **SPRING RATE -500 -800 -1000 -1000

SPRING: ADJUSTMENT DIRECTION

- All depends on grip level Velcro or skating rink?
- Try softer for grip as first change
- Stiffer if car rolls over and gives up
- Stiffer springs for better transition crisper
- Softer springs for bumps and curbs
- Softer rear springs for better traction
- Stiffer front springs for better entry stability
- Always think how car is moving and what you need

SPRING RUBBER

- Goes in coils of spring and increases spring rate when compressed Many different rates and types

SPRING RUBBER

- Allows you to quickly change the spring rate without removing the springs
- Very inexpensiveEasy to get (link later in presentation)
- Estimated rate increase...

Conversion	5.71		
N/mm	lb/in	ID	NOTES
97	553	100-2	
107	613	100-2	1 White Rubber
119	681	100-2	2 White Rubber
112	639	100-2	1 Yellow Rubber
129	735	100-2	2 Yellow Rubber
150	859	160-2	
167	953	160-2	1 White Rubber
185	1057	160-2	2 White Rubber
174	993	160-2	1 Yellow Rubber
200	1142	160-2	2 Yellow Rubber

BUMP RUBBER

- Goes on shock shaft and increases spring rate when compressed
- Many different rates and types

PACKERS

Packers: plastic shim to control when bump rubber starts to compress

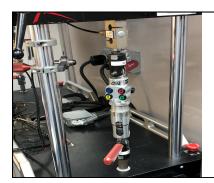
PACKER & BUMP RUBBER: THEORY

- Can be used if can't change springs due to rules or cost
- Easy way to stiffen one end of the car
- Very inexpensive
- Different than a spring or spring rubber change
 - Can time when bump rubber comes into play with packer
 - Spring rate different than a coil spring change

BUMP RUBBER RATES • Not linear like a spring Bump Rubber Compare 2 Cranges 2 Rods 2 Rods 2 Rods C clasto

HOW TO SET UP A BUMP RUBBER/PACKER PACKAGE

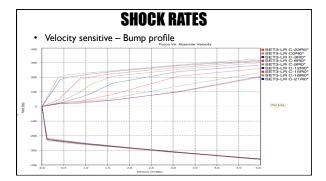
- Try to get a rate graph of the bump rubber
- Pick something relatively linear if possible to start
- · Estimate shock travel
 - Data system if possible
 - Tie wraps on shock shaft
 - Video camera
- Install bump rubber and enough packers to give some engagement
- Go run and feel the car add packers until you feel the change in stiffness
- Tune like you would springs

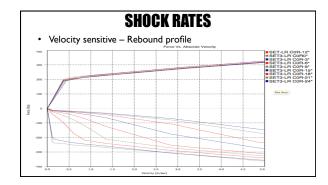

BUMP RUBBER/PACKER ADJUSTMENT DIRECTION

- Need less movement close packer gap (more packers)
- Need stiffer close gap or stiffer bump rubber
- Pitch on brakes too much close gap on front
- Push off corner close gap in the rear, less squat
- Roll too much close gap
- Flat slide (skating rink) open gap or softer bump rubber
- Not crisp on direction change close gap front
- Rain? Don't do a thing not enough lateral load generated to get to bump rubber

SOURCE FOR BUMP RUBBERS, PACKERS & SPRING RUBBERS

• REsuspension.com





SHOCKS

SHOCKS: THEORY

- A complete webinar in itself
- Download this book \$2.99
 - https://speedsecrets.com/product/shocks-for-drivers/
- Bump
- Rebound
- Shock speed vs. Car speed
- Timing device
- Not like a spring or bump rubber
- Need profile to understand how to adjust

SHOCKS: ADJUSTMENT DIRECTION

- First think like a spring but remember it's NOT at all like a spring
- Controlling MOVEMENT and speed of that movement, not weight transfer amount, but how weight gets there and how fast
- Roll too much more rebound, like an anti-roll bar
- Pitch too much more front bump and rear rebound hold it flat
- Bad in bumps softer bump first high speed if possible
- Need power down traction softer rear bump and softer front rebound, let it squat
- Think what's happening and how you can use shock to control it
- Scratching surface get the book it's the bargain of the century

AERO: THEORY

- Balance is key. More important than total down force or drag
- Center of pressure (CoP) sets balance % front
- If you're going over 40 MPH, you have an aero car
- Drag and downforce go up with the square of the speed 2x faster = 4x drag and downforce
- Don't need wings and splitters to adjust your aero balance. Rake, tabs, flaps
- $\bullet~$ The front 1/3 of the car most important for drag
- Frontal area big factor in drag

AERO: ADJUSTMENT DIRECTION - PART 1

- Pick a turn that is your aero balance test turn
- Balance first, drag and downforce 2nd
- Add balanced downforce first, reduce drag next
 - Unless you're at Le Mans or Daytona
 - Or you have low power car
- Add downforce as efficiently as possible L/D
 - Under-wing car go lower
 - Gurneys
 - Wing flap
 - Splitter extensions

AERO: ADJUSTMENT DIRECTION - PART 2

- More rake moves CoP forward
 - Most powerful in flat bottom car that's low
 - Still helps in GT car
- Front wing change has little drag impact use for balance change
- · Springs and shocks effect aero balance dynamically
- More rear wing helps braking and stability parachute effect
- · Use simple add-on parts

-				
-				
_				
_				
-				
_				
-				

THE "S" FLAP

Very efficient downforce improvement, like a Gurney for the wheel arch

SPLITTER & EXTENSIONS

• All about area for slow air to act on

DIVEPLANES

• Blunt force and NOT very draggy

R	Λ	П	١.	T	H	E	N	R	١	ı

- · Most important thing is have a good driver
- Everything else pales in comparison
- Always practice in the rain if you can
- It's simple you're in skating rink conditions
 - Be easy on the tire loading
- Nothing to press the tire into
- Hard to get heat in the tire
- Tire compound softer than dry tire
- · Rain tire is a pump

RAIN: ADJUSTMENT DIRECTION

- Softer everything
 - Springs
 - Shocks
 - Roll bars
- Generate tire temp
 - More toe
 - More camber
- Increase tire pressure 4psi over dry tire to start
- Brake bias to the rear 1% or more
- Same downforce or LESS!
 - Depends on situation
 - Starting position
 - Rain rate
- Raise car if hard rain and flat bottom

 •	 	•

FINAL THOUGHTS

- At the end of this presentation are some slides to ponder...
- $\bullet\;$ When you download the presentation you will want to check them out... sort of a hidden nugget
- Most are from the best race engineer you've never heard of:

Steve Johnson

THE MOST IMPORTANT THING IS...

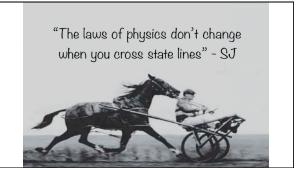
HAVE FUN!

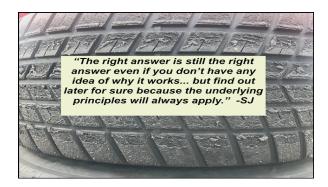
Best way to contact me for questions is my Facebook page, or on Twitter or Instagram:

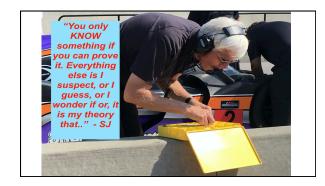
www.facebook.com/AutoRacingTechTips

@JVBRAUN

NEXT?


5 Ways to Drive Faster




June 5, 2018

www.SpeedSecrets.com/5-Ways-Drive-Faster

Registration is open now

